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Abstract: In order for a mesh-based routing protocol, in a mobile
ad hoc network, to perform well it must achieve a high level of
robustness without excessive overhead. We present the centered
protocol for unified multicasting through announcements
(CPUMA) for mobile ad hoc networks. A distributed core
selection and maintenance algorithm is used to find the source
centric center of a shared-mesh. We leverage data packets to
center the core of each multicast group shared mesh instead of
using GPS or any pre-assignment of cores to groups (the case of
existing protocols). The proposed centering scheme allows
reducing data packet overhead and creating forwarding paths
toward the nearest mesh member instead of the core to reduce
latency. We show, via simulations, that CPUMA outperforms
existing multicast protocols in terms of data packet overhead,
and latency while maintaining a constant or better packet
delivery ratio, at the cost of a small increase in control overhead
in a few scenarios.
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I. I. INTRODUCTION

Ad-hoc networks are infrastructure-less, dynamically
reconfigurable wireless networks that consist of nodes that act
as routers. In such an environment, we face the problem of
providing a multicast routing protocol capable of handling
high mobility, high traffic load and the ability to handle
multiple sources and multiple large multicast groups.
Depending on how the routes connect the multicast members
with each other, we can basically distinguish two major
categories of protocols [1, 2]: Mesh-based and Tree-based
protocols.

The key difference between multicast meshes and multicast
trees is that in a multicast mesh data packets are transmitted
over more than one path. In a mesh-based protocol, if one
path is broken other redundant paths deliver the multicast
packets; network structure reconstruction is less frequent and
produces lower control overhead. A mesh-based protocol thus
benefits from an increased robustness at a cost of redundancy
in data transmission and thus lowered efficiency. Existing
mesh-based approaches seldom try to reduce the data packet
overhead; concentrating solely on robustness. Mesh-based
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approaches that rely on the senders to maintain the mesh have
the drawback of multiple control packet floods per multicast
group. Some mesh-based approaches select one or more
receivers as multicast group leaders (referred to as core nodes)
to maintain the mesh and reduce network wide flooding.

Multicast Ad Hoc On-Demand Distance Vector (MAODV)
is a well known tree-based protocol that creates and maintains
a bi-directional shared-tree for each multicast group [3]. The
key problem of MAODV is the "continuous" tree
reconstruction (because of "real" and "apparent" link failures
[4] that are frequent in high mobility and high traffic load
scenarios resulting in the flooding of control packets further
exacerbating the problem and degrading performance
significantly. Robust Multicasting in Ad-hoc Networks using
Trees (ROMANT) is a tree-based protocol that solves the
problem of fixing broken links in MAODV by avoiding it
altogether and instead reusing the group hellos to periodically
reconstruct the group [4]. However, with ROMANT (like
other tree-based protocols) broken branches result in packets
being lost. The Protocol for Unified Multicast Announcements
[5] (PUMA) can operate as a tree or a mesh-based protocol; it
evolved from ROMANT. With PUMA, each receiver connects
to the core (Le., the node with the highest receiver id) along all
the shortest paths between it and the core forming a mesh with
all the nodes along the shortest paths to the core. Once a core
is chosen, it remains the core unless the network is partitioned
or the core fails. This can result in considerable data packet
overhead because a core at the "edge" of a mesh, away from
source nodes, will have long forwarding paths to reach the
receivers and therefore experience high latency. Indeed, the
core in PUMA is left to wonder the network and create a non
optimized mesh structure.

Multicasting on Directional Antennas [6] (MODA) is a
protocol that evolved from PUMA with the aim of reducing
data packet overhead; it does this by using GPS to set the core
at the center of the mesh. However, GPS is not always
available or appropriate in all situations (e.g., underground
areas without access to GPS signal). Various distributed
center-location algorithms have been proposed to approximate
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the minimal-cost tree spanning all members of a multicast
group [7]. However, these algorithms generate considerable
control overhead, require knowledge of the network topology,
or do not scale since they must keep track of all nodes to elect
a centered core.

In this paper, we propose CPUMA, a mesh-based protocol
that provides robustness and reduces overhead (compared to
existing protocols), without requiring specific equipment (e.g.,
GPS) nor hard-to-get information in a mobile environment
(e.g., network topology), by (1) periodically centering the core
of the mesh; (2) not allowing nodes on the periphery of the
mesh to rebroadcast data packets emanating from inside the
mesh in order to reduce unnecessary data packet forwarding;
and (3) creating forwarding paths toward the nearest mesh
member instead of the core of the mesh to reduce latency and
take advantage of the robustness of the mesh sooner than later;
forwarding paths that head directly toward the core instead of
the mesh may include nodes not in the mesh where packets
have a higher probability of being lost. Without centering the
core node, receivers will form a mesh around a core node that
may move to the edge of the network creating long single-use
paths. With CPUMA, the paths, created to a core node that is
at the center of the sources, are shorter, more robust around
the area data packets must traverse and are able to reach
multiple receivers; mesh members on the outside edge of the
mesh do not rebroadcast data packets heard from nodes closer
to the core.

The remainder of the paper is organized as follows. Section
2 describes details of the proposed multicasting protocol.
Section 3 shows the effectiveness of the protocol via
simulations. Section 5 concludes the paper.

II. CPUMA

A. Overview

CPUMA is a mesh based protocol that implements a
distributed algorithm to elect and maintain one mesh member
(not necessarily a receiver) as the core of the multicast group.
Periodic Multicast Announcements (MAs) originated at the
core, and broadcasted to every node in the network contain all
the information needed to enable the protocol to function.
Every receiver connects to the elected core along the shortest
routes, and these nodes form a mesh. A source node analyses
the MAs it receives and sends a data packet to the multicast
group along the shortest path to the nearest mesh member (not
necessarily the core). When the data packet reaches a mesh
member, it is flooded within the mesh. Nodes maintain a list
of sources and the shortest hop count from the source. This
information is obtained from data packets and CPUMA
header; it is used by each mesh member to calculate the
average minimum distance (measured in hop count) to the
sources. The average minimum distance is simply the sum of
the smallest hop counts to each source divided by the number
of sources. This minimum distance is referred to as the weight
of the member with respect to being the center of the mesh.
The mesh member with the lowest weight is elected as the
core. A Mesh member will periodically monitor its weight
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and if it is lower than the weight of the current core, it will
elect itself as the new core.

B. The Multicast Announcement

The functions performed by CPUMA allow nodes to join
and leave the multicast group, participate in core election, as
well as inform all nodes of their distance to the core, their
distance to the mesh, and the next hop toward the mesh. Each
node can calculate its distance to the core of the multicast
group, and its distance to the nearest mesh member in the
multicast group. To realize these functions, CPUMA makes
use of multicast announcements; these announcements are first
broadcasted by the core and then altered and rebroadcasted by
each recipient. A MA includes the following fields:
• Core ID: The address of the elected core
• Core Weight: The weight of the elected core
• Group ID: The address of the multicast group
• Sequence number: The sequence number in the latest MA

received for that group
• Parent: The address of the next hop toward the core if the

current node is a mesh member, otherwise, the address of
the next hop toward the nearest mesh member.

• Distance to Core: One plus the distance to the core of the
neighbor in the connectivity list of this multicast group
with the smallest distance to the core

• Distance to Mesh: Set to Zero for all receivers and Mesh
members; for the other nodes, it is set to one plus the
distance to the mesh of the neighbor in the connectivity
list (see Section C) of this multicast group with the
smallest distance to the mesh

MAs from multiple multicast groups are aggregated
together, eliminating the need for multiple MA broadcasts for
each multicast group. The CPUMA Header is included in all
packets transmitted. The CPUMA header includes:
• MA Count: Number of MAs contained in control packet

(zero if data packet)
• Hop Count: Number of times the data packet has been

forwarded (zero if control packet)
• Reserved [1]: Empty (for future use)

After the CPUMA Header, the packet may contain 1 or
more MAs if it is a control packet or the data being transmitted
if it is a data packet. CPUMA does not combine MAs and data
together in one packet.

C. Connectivity and Source Lists

Every node in the network maintains a connectivity list
using the MAs it receives from its neighbors. An element in
the connectivity list contains the neighbor ID, MA reception
time, and all the values of the fields (distance to core, parent,
and distance to mesh) found in the MA received from the
neighbor. A node will use the connectivity list to build its
own MA. The connectivity list is updated with the highest
sequence number announcement from each neighbor for each
group and the time it was received. The sequence number is
generated by the core node and incremented every time it
sends a periodic MA. If a node receives a MA for a known
group with a better core (lower weight or equal weight and
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The core weight is 2 because the core node is an average of
2 hops away from both sources (Figure 1). The parent could
have been node 1 or 5, but the multicast announcement for
node 1 is received first and is the one selected (Table 3).

D. Core Election and Centering

A receiver that wishes to join a multicast group from which
it has not received a MA considers itself the core of that
group. It starts sending periodic MAs with the following
values (Table 4):

3. Node 6 will transmit a MA with the values shown in Table
1.
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higher id), it deletes the current connectivity list for that group
and creates a new connectivity list starting with the MA it just
received. The connectivity list allows a node to find the
neighbor with the smallest distance to the mesh , the smallest
distance to the core and its multicast parent. The node chosen
as the multicast parent depends on the status of the current
node . It is the next hop along the shortest route to the core if
the current node is a mesh member. The current node will
select the neighbor with the smallest distance to the core in its
connectivity list as its parent. If the current node is not a mesh
member, its parent is the next hop along the shortest route to
the nearest mesh member. The current node will select the
neighbor with the smallest distance to the mesh in its
connectivity list as its parent.

Every member in the multicast group also maintains a
source list. The source list contains the multicast group id, the
source address, and the last packet id received from each
source, all extracted from the data packets of each source. The
time the last data packet was received as well as the hop count
to the source are added to each entry in the list. The CPUMA
header contains the hop count from the source, which is
initialized to zero when the source first broadcasts its data
packet and is incremented by one every time it is forwarded.
Since data packets are flooded within the mesh, nodes
maintain a packet ID cache to drop duplicate data packets.
Mesh members update the hop count and time received of the
source list before dropping duplicate packets. The source list
keeps the smallest hop-count from duplicate data packets.
Higher packet ids replace older entries. Entries older than the
source timeout (e.g., 3 seconds) are not used when calculating
node weights.

Figure 1. Mesh broadcasting Multicast Announcements

For better understanding, let us consider the example
(Figure I) that shows the broadcasting of MAs initiated by the
core . Table I shows the MA values for node 6. The core id is
11, the group id is 224 .0.0.1, the sequence number is 79 and
the core weight is 2. Table 2 shows the source list maintained
by node 6. The group id is 224 .0.0 .1 and the member weight is

Every multicast announcement interval (e.g. , 3 seconds),
the node will increase the sequence number by 1 and
rebroadcast the MA to its neighbors.

Unless receiving a MA for a new group, or an existing
group with a new core, nodes wait a short period of time
before generating their own announcements. Nodes propagate
MAs based on the best MAs they receive from their neighbors.
A MA with a lower core weight is considered better than a
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data packet transmission within the acknowledgement period
(e.g., 1 second).

In PUMA all mesh members forward packets, and all
receivers are mesh members. In CPUMA receivers forward
packets only if they have mesh children or receive a packet
from outside the mesh (from a non member neighbor node that
considers it as the parent node). A receiver that is a parent to a
mesh member is within the mesh; it is a hop in the path from
another receiver to the core. A receiver that is not a parent to
a mesh member is in the periphery. There is no need for
receivers on the periphery of the mesh to rebroadcast data
packets received from within the mesh, since no node outside
of the mesh is interested in receiving the packet (the packet is
not destined for this node). Table 5 presents the pseudo code
of the key functions of CPUMA.

send multicast announcement

/* do nothing - node will timeout */

SUM(smallest hop count to each source)
/ the number of sources

CPUMA PSEUDO-CODETABLEV.

if self is a Receiver AND
(my.coreId == Unknown) then

my.coreId = self
send a Multicast Announcement
(MA)
/*my.x is equal to the value of
x of the current node; self is
equal to current node */

end if
if self receives MA
if (my.coreId == Unknown OR

ma.coreWeight < getGroupWeight
OR

(ma.coreWeight == getGroupWeight
AND
ma.coreId > my.coreId)) then
/*ma.x is equal to the value of
x included in the MA that is
received */

coreId = ma.coreId
send MA

end if
end if
if my.coreId == self then

my.distance_to_the_core = 0
else

my.distance_to_the_core =

INVALID_DISTANCE
For each node in connectivity list

do
if node.distance_to_the_core <

my.distance_to_the_core then
/*node.x is equal to the
value of x of node in
connectivity list*/

my.distance_to_the_core =

node.distance_to_the_core

Elect
Core

Leave
Group

Join
Group

Compute
Node

Weight

Compute
Distance
to the
Core

MA with a higher core weight; in the case of a tie, the higher
core ID is considered better than a lower core ID.

The core (re-)computes its weight before sending its MA
every multicast announcement interval. Every centering
interval (e.g., 15 seconds), a member of the multicast group
(re-) computes its weight and compares it to the weight of the
core. If its weight is smaller than the core by the minimum
threshold (e.g., 1 hop or 10%), it elects itself as the new core,
and broadcasts it to its neighbors. It is worth noting that our
simulations did show that setting the centering interval equal
to or less than the multicast announcement interval resulted in
an increase in control packet overhead without significant
improvements. The simulations performed best overall using
15 seconds as the center interval.

A node that receives a MA with a core id and core weight
that are better than the values it currently holds in its group
connectivity list will update its values and broadcast a MA
immediately. Eventually every node will receive a MA with
the best core id and core weight for that multicast group. If a
receiver does not receive a MA for a period of time 3 times the
MA interval (e.g., 9 seconds) it elects itself as the core of that
multicast group and begins transmitting MAs.

E. Mesh Establishment and Maintenance

Receivers set their mesh distance to zero in their MAs to
indicate they are mesh members. A non-receiver becomes a
member if its connectivity list contains a fresh entry with at
least one mesh member with a bigger hop count to the core
than itself. An entry is considered fresh if it was received
within 2 times MA intervals (e.g., 6 seconds). This allows all
shortest paths from the receivers to the core to be included in
the multicast mesh. Nodes transmit an immediate new MA
whenever their mesh distance changes to or from zero. A
node outside of the mesh sets its parent to the neighbor in the
connectivity list with the shortest distance to the mesh and sets
its distance to the mesh as 1 plus the value of its parent's
distance to the mesh. In the case where more than 1 neighbor
has the same distance to the mesh, the connectivity list entry,
that is received first, is chosen.

F. Forwarding Multicast Data Packets

The neighbors in the connectivity list with a smaller
distance to the mesh are the potential next hops to the
multicast group. A node that is not a member of the mesh
forwards a multicast data packet if it is the parent of the node
that sent the data packet. Multicast data packets are forwarded
hop by hop until they reach the nearest mesh member at which
point they are flooded within the mesh. The packet ID cache
allows nodes to drops duplicates.

When a node that is not a mesh member transmits a packet,
it expects its parent to forward it. When the parent forwards
the packet, the node that originally sent the packet will also
hear the forwarded packet. This mechanism serves as an
implicit acknowledgement that the packet was received. The
connectivity list is updated and neighbors are removed if a
node does not receive an implicit acknowledgement of the
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III. SIMULATIONS

In this Section, we present the simulation results
comparing CPUMA and PUMA. We do not compare CPUMA
with MAODV or ODMRP since PUMA has already been
shown to perform better than those protocols [5]. PUMA
concentrates mesh redundancy in the region of the receiver
chosen as the core. CPUMA concentrates mesh redundancy in
the region of the mesh between the source nodes, and
therefore the area where data packets travel most through. We
compare both of these algorithms using NS-2[8]. We thank
Sidney Doria for the PUMA code for NS-2. Figure 3. CPUMA after Centering the Core

Figure 2. PUMA: Data Packet Overhead
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To illustrate the data packet overhead savings of CPUMA
we consider a simple example with 1 source, 3 receivers and
static nodes (Figures 2 and 3); solid nodes indicate Mesh
members while dashed nodes indicate non-members. Sources
and Receivers are labeled in both figures . Figure 2 shows the
mesh structure after core election in PUMA. The highest
receiver ID is elected Core and the other receivers connect via
the shortest paths to it; the number next to each node indicates
the number of times a data packet is broadcasted before it
reaches that node . In PUMA the Source forwards packets
toward the Core; once the core receives the packets it forwards
them to both receivers. It takes a total of 9 broadcasts to reach
all receivers: 4 broadcasts to get from the source to the Core
(via nodes a-b-d) and 5 broadcasts to reach the receivers (l
broadcast by the core and 1 broadcast by f, g, hand i each) .

end if
end For

end if

if (parent -- self
OR (self is a member of the mesh

AND my.number_of_mesh_children >
0» then
/* parent is the value of the

field parent included in CPUMA
header that comes with Data packet
*/

hopcount++
/ * add 1 to hop count v a l ue in MA
header that is included in all
transmitted packets * /

broadcast data packet with the new
value of hop count

end if
My.number_of_mesh_children = 0
For each node in connectivity list do

if node is a member of the mesh AND
node.distance_to_the_core >
my.distance_to_the_core

then
my.number_of mesh_children ++;

/* the current node is responsible,
in terms of
forwarding/transmission, for all
mesh nodes farther from the core
than the current node */
end if

end

if (my .coreId == self OR
self is a receiver OR
self is a member of the mesh) then
my.distance_to_the_mesh = 0

else
my.distance_to_the_mesh =

INVALID_DISTANCE
For each node in connectivity list

do
if node.distance_to_the_mesh <

my.distance_to_the_mesh then
my.distance_to_the_mesh =

node.distance_to_the_mesh
end if

end For
end if

Process
the

reception
of Data
Packet

Compute
the

Number
of Mesh
Children

Compute
Distance
to the
Mesh
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PUMA CPUMA

Data Packets Sent 5970 5994

Data Packets Received 17587 17936

Data Packets Forwarded 58686 30058

Delivery Ratio 98.20% 99.74%

Control Packets Sent 13357 13053

Latency 0.057 0.035

A. Metrics

The metrics used in our evaluation are packet delivery
ratio, control overhead, data packet overhead, latency and
traffic. Packet delivery ratio is the number of data packets
delivered divided by the number data packets that should have
been delivered. The number of data packets that should have
been delivered is the product of data packets sent times the
number of receivers. Control overhead is the number of
control packets that are generated divided by the number of
data packets delivered. Data packet overhead is the number of
data packets transmitted divided by the number of data packets
delivered. Latency is the sum of the delay between sending a
packet (from the source) and receiving it (by the receiver) for
all data packets divided by the number of data packets
received. The data packets overhead is more important than
the control overhead since the data packets are several (17 in
our simulations) times larger than the control packets (544
compared to 32 bytes). Traffic is the sum of the total Kbytes
transmitted. The PUMA and CPUMA headers are equal in
size, so no extra overhead is incurred.

The mesh structure after the second re-centering of the core
in CPUMA is shown in Figure 3. The Source forwards data
packets toward the closest mesh member instead of the core,
in this case Receiver 1 via nodes a and c. At the first re
centering of the core Receiver 1 becomes the core and the
mesh is recreated. Receiver 2 finds the shortest path to
Receiver 1 via nodes e-b-c. Receiver 3 finds the shortest path
to Receiver 1 via f-h. Node c is selected as the core in the
second re-centering of the core. Receiver 3 finds a new
shortest path to node c via nodes d and b and the mesh is
optimized. It now only takes 6 broadcasts to reach all
receivers; 2 from the source to the core, one more from the
core to Receiver 1, b broadcasts and reaches both d and e
which each broadcasts once more to get to Receiver 2 and
Receiver 3.

We simulated one source sending 2 packets per second to
the three receivers with zero mobility configured as shown
above for 3000 seconds. Table 6 shows that CPUMA reduces
the amount of data packets by almost 50% compared to
PUMA (58686 vs. 30058). The number of control packets is
practically the same, for both PUMA and CPUMA, since only
two rounds of core re-centering are performed. Delivery ratio
is slightly improved and latency is improved since the number
of hops from source to receivers is reduced.

TABLE VI. PUMA vs.CPUMA STATISTICS

B. Scenarios

The values of the simulation parameters used in all
experiments are shown in Table 7. Five experiments were
carried out to compare PUMA with CPUMA.

TABLE VII. SIMULATION PARAMETERS

Simulation Parameters

Simulator NS-2 version 2.33

Simulation Time 700 seconds

Simulation Area 1000m x 1000m

Node Placement Random

Pause Time 0

Mobility Model Random Waypoint

MAC Protocol IEEE 802.11- 1997

Data Packet Size 512

All other Parameters NS-2 Defaults

We used scenarios similar to those found in [5]:
• Experiment 1: "Mobility" assumes 1, 5, 10, 15, and 20

m/s; Senders = 5; Members = 20; Traffic Load = 10
packets/s

• Experiment 2: "Senders" assumes 5, 10, 15, and 20;
Mobility = 5 m/s; Members = 20; Traffic Load = 10
packets/s

• Experiment 3: "Members" assumes 5, 10,20,30, and 40;
Mobility = 5 m/s; Senders = 5; Traffic Load = 10
packets/s

• Experiment 4: Traffic Load assumes 10, 20, 30, 40, and
50 packets/s; Mobility = 5; Senders = 5; Members= 20

• Experiment 5: Multiple Multicast groups 1, 2, 5, 10;
Senders = 5; Members = 20; Mobility = 5 m/s; Traffic
Load = 10 packets/s

Senders and Receivers are chosen randomly from among
the 50 existing nodes. Traffic load is equally distributed
among all senders; a traffic load of 10 packets/s and 5 senders
mean that each sender sends 2 packets/so R stands for
Receivers, S for Senders, M for mobility and T for traffic in
the graphs below.

C. Results

A small improvement in the packet delivery ratio across
the board for CPUMA is shown in Figure 4. Indeed, CPUMA
delivers 0.3 to 2% more data packets than PUMA in most
scenarios except in Figure 4-4. In Figure 4-4, the network is
very congested and the reduced packet forwarding allows
CPUMA to outperform PUMA by 2-3.5%. Since data packets
travel toward the nearest mesh member instead of the core,
data packets benefit from the redundancy of the mesh sooner
and are less likely to be lost.

6
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Figure 6. Data Packet Overhead

included in the mesh and PUMA and CPUMA construct
similar meshes.

A large difference in the latency of CPUMA compared to
PUMA is shown in Figure 7. The latency for CPUMA in
Figure 7-1 averages O.l1s compared to 0.26s (more than two
times bigger) for PUMA. Latency averages 0.09s for CPUMA
compared to 0.29s for PUMA (more than 3 times bigger) in
Figure 7-2. The latency difference is more pronounced (4
times bigger) as the number of receivers increases, as shown
in Figure 7-3, and (6 times bigger) as traffic increases in
Figure 7-4. In CPUMA, this improvement is due to nodes
forwarding data packets toward the mesh, and having a mesh
near the center of all of the senders in the network. In PUMA,
a sender node would instead send its data packet toward the
non-centered core which may be at the other side of the
network; this increases the length of the path the data packet
must travel before reaching the mesh and results in a longer
delay reaching the receivers.
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Figure 4. Packet Delivery Ratio
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Figure 5 shows that the control overhead of CPUMA and
PUMA is practically equal except in Figure 5-2. In Figure 5
2, the number of senders increases resulting in more values
used to calculate node weights (in the case of CPUMA). The
weight calculations change faster resulting in the frequent
centering of the mesh, and therefore more control packets.
The increase is small (2-2.5%) since mesh members only
check their weights at 15 second intervals. If the centering
interval is lowered to 1 second, control packet overhead
doubles in our 20 senders' scenario without improving the
results significantly. This is because the core changes around
a few nodes near the current center without affecting the mesh
structure. It is prudent to choose a reasonable interval so the
core is not constantly changing.

Figure 5. Control Overhead
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The difference in the traffic generated by CPUMA
compared to PUMA is shown in Figure 8. All simulations
show that CPUMA produced an average 18.4% less traffic
than PUMA. The best results at an average of 21.8% less
traffic, shown in Figure 8-2, correlates to the data packet
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CPUMA handily outperforms PUMA in terms of data
packet overhead as shown in Figure 6. Indeed, CPUMA
achieves an average overhead reduction of 30%; the reduction
exceeds 50% in Figure 6-2 with 15 senders. The reduction in
data packet overhead is maintained when faced with changes
in mobility, the number of senders, the number of receivers
and the amount of traffic. A smaller improvement than the
others (14% - 20%) is seen in Figure 6-3 because as the
number of receivers approaches 100%, more nodes have to be
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overhead reduction shown in Figure 6-2. CPUMA only has an
average of 14.1% less traffic than PUMA in Figure 8-4, but
averages 2.3% higher packet delivery ratios.

traffic in Figure 9-4 due to the lower data packet overhead
even at the cost of higher control packet overhead. Latency
for CPUMA averages 0.12 seconds compared to 0.19 seconds
for PUMA as shown in Figure 9-5; this is a 33% decrease in
latency.

IV. CONCLUSION

The Centered Protocol for Unified Multicasting through
Announcements (CPUMA) is based on leveraging data
packets to center the core node, forwarding data packets
toward the mesh instead of the core to lower the latency.
Additionally, in CPUMA receivers selectively forward data
packets in an effort to reduce data packet overhead. The mesh
constructed in CPUMA is centered with respect to the senders
and in the area where data packets must travel to get to the
receivers. CPUMA maintains a considerably lower data
packet overhead and latency than PUMA while maintaining or
improving packet delivery ratio and not significantly
increasing control overhead regardless of mobility, traffic,
senders or receivers in the network.
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CPUMA outperforming PUMA in the multiple multicast
group experiment as shown in Figure 9. CPUMA generates an
average of 18% less data packet overhead than PUMA in
Figure 9-2. CPUMA generates an average of 17.2% less
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